Ecospritzbeton

Dr. Ing. Massimiliano Bringiotti
Dr. Arch. Andrea Parodi
GeoTunnel S.r.l.

Mischelatore Ponderale
Polivalente M 8.4 e Braccio
Manipolatore Robotizzato SM 305.8 atti al confezionamento
ed alla posa di calcestruzzi
proiettati strutturali

Impianti (Fig. 1) destinati a lavori quali:

- gallerie di bypass
- protezioni superficiali
- protezioni del fronte di scavo in galleria
- strutture monoguscio
- riparazioni
- rivestimenti di gallerie

1.) Il cemento Ecospritz

La Buzzi Cementi S.p.A., dopo una lunga ricerca e sperimentazione, ha messo a punto un cemento attuato al confezionamento di calcestruzzi proiettati che non necessita di additivazione per la sua presa (su pareti verticali o negative), mantenendo qualità prestazionali che vengono definite «strutturali», cioè identificabili in quelle di un calcestruzzo ottimale. Il prodotto mantiene un brevetto internazionale.

Le peculiarità principali sono:

1. presa istantanea senza bisogno di additivi;
2. resistenze medie alte rispetto a spritz classici;
3. resistenza ai solfati ed alle acque dilavanti;
4. buona resistenza alle reazioni alcali/aggregati;
5. proprietà «ecologiche» del prodotto;
6. elevata permeabilità;
7. ridotti sfriti (<10% !);
8. sfriti facilmente asportabili.

Viene posato in opera mediante una pompa pneumatica a rotore. Deve essere trasportato mediante attrezzature speciali che mantengono di visi aggregati e cemento sino alla fase di getto nella tramoggia della pompa. Definendo pertanto questo prodotto un «calcestruzzo strutturale», in fase di progettazione, sfruttando questa tecnologia, si perviene per lo meno ai seguenti vantaggi:

1. Nelle Opere in Sottosuolo, ottenimento di un calcestruzzo strutturale (>40 Mpa) già in prima fase e di conseguenza diminuzione dello spessore del getto finale e della sezione di scavo (oltre alle maggiori caratteristiche che lo legano al fattore sicurezza in fase operativa).
2. Nelle Opere di Consolidamento esterno (paratie, berlinesi, diaframmi,...), a parità di spessore, possibilità di riduzione delle armature collaboranti e/o maggiore coefficiente di sicurezza.
3. Rapidità e semplicità di esecuzione per lavori di ripristino di calcestruzzi ammalorati, quali rivestimenti di gallerie in esercizio, pile, pulvini, impalcati, ...
4. Soluzione dei problemi di rivestimento in sezioni aventi geometrie particolarì (gallerie di bypass, nicchie,...).
5. Soluzione dei problemi di gestione delle fasi operative in situazioni di limitati periodi operativi (strade, autostrade, linee ferroviarie,...) per la semplicità di approntamento, fase produttiva e rimozione del Cantiere.
6. Economicità di gestione del parco attrezzature (si elimina i costi di acquisto e gestione dell’impianto di betonaggio, delle autobetoniere, delle pompe da spritz beton ad umido,...), per cui minori consumi, manutenzioni e costi di gestione del parco macchine.
7. Possibilità di installazione del Cantiere di confezionamento del calcestruzzo fino a 1 km di distanza dalla zona di intervento, sfruttando la veicolarità per via pneumatica della miscela semiumida preparata.
8. Ecologia dell’intervento, non dando adito alla possibilità di utilizzo di alcun prodotto chimico additivo.

Prima di illustrare gli impianti realizzati per l’applicazione si ritiene doveroso esporre alcune premesse sulle tec-
1.1) Le tecnologie dello spritzbeton
La tecnica del calcestruzzo proiettato, che a tutt’oggi ha portato al deposito di più di 5000 brevetti in tutto il mondo, si basa sulle esperienze sviluppate nel l’arco di questo secolo negli Stati Uniti ed in Europa. Il primo brevetto in materia: quello depositato negli USA nel 1911 da Carl E. Akeley, riguarda un’attrezzatura per la proiezione di una miscela di cemento e sabbia denominata «Cement Gun».
Tutte le macchine, via via perfezionate, comparse fino alla fine degli anni ‘50 erano basate su una tecnologia denominata «a secco», in cui un legante cementizio, aggregati asciutti (o a bassissimo contenuto di umidità) ed eventualmente un accelerante in polvere venivano mescolati, convogliati in un tubo di dimensioni adeguate e fatti giungere sotto pressione ad una pistola o apparato di proiezione in cui veniva introdotta un’opportuna quantità di acqua d’impasto, che in maniera estremamente veloce doveva umidificare tutta la miscela secca.
Nel secondo dopoguerra si è sviluppata la tecnologia di proiezione «ad umido», in cui cemento e aggregati vengono pre-mescolati con tutta l’acqua d’impasto, e la miscela umida viene pompatia a pressione fino all’ugello di proiezione nel quale è aggiunto eventualmente un accelerante liquido.
Tale variante della tecnologia dello Spritzbeton fu proposta e sviluppata nel tentativo di dare una soluzione a due carenze tecnologiche manifestate dalla tecnica «a secco» di quegli anni: 1) rendere più controllata la quantità di acqua totale immessa nell’impasto, al fine di migliorare le prestazioni finali del calcestruzzo proiettato e renderle analoghe a quelle di un calcestruzzo ordinario; 2) aumentare il volume di Spritzbeton applicato nell’unità di tempo.
Il primo obiettivo fu almeno parzialmente conseguito integrando la tecnologia di Spritzbeton con quella del calcestruzzo preconfezionato: il calcestruzzo da proiettare viene impastato con acqua in un impianto addizionale di miscelazione ad umido e quindi trasmesso, con tempi di trasporto più o meno lunghi, all’impianto di Spritzbeton vero e proprio per la sua messa in opera. Il soddisfacimento del secondo obiettivo ha da parte sua portato alla costruzione di apparati di proiezione sempre più potenti ed affidati a sistemi robotizzati telecomandati. Si è così allontanato il lancista dalla superficie di applicazione dello Spritzbeton, diminuendo di conseguenza il suo completo controllo sulla qualità del materiale applicato (1).
Oggi, nel mondo, entrambe le tecnologie, quella «a secco» e quella «ad umido», riscuotono un vasto successo. Le preferenze degli operatori vanno all’una o all’altra tecnica a seconda delle necessità, delle tradizioni culturali e delle conoscenze pratiche che storicamente si sono create col passare degli anni.

1.2) Gli additivi per spritzbeton
L’uso di additivi acceleranti comporta però due difetti sostanziali, molto differenti tra loro:
a) il primo è un difetto prestazionale, in quanto l’utilizzo di questi acceleranti provoca una forte riduzione (30-45%) delle resistenze meccaniche del calcestruzzo alle lunghe stagionature.
b) Il secondo è una difficoltà di utilizzo in cantiere, in quanto l’elevata alcalinità di questi acceleranti provoca sia un’esposizione indesiderata degli operatori a nebbie fortemente irritanti per la pelle e gli occhi, con conseguenti problemi di protezione e, nel caso peggiore, di insorgenza di malattie professionali, sia la liberazione di eluati ad elevato pH e contenuto in sali alcalini, che vanno inevitabilmente ad incrociare i dreni ed inquinare falde e corsi d’acqua adiacenti i cantieri di lavoro, con reazioni pesanti e frequenti da parte delle Autorità locali preposte alla salute pubblica.

1.3) Cementi per spritzbeton
1.3.1) Cementi Tradizionali
I cementi che vengono impiegati per il confezionamento del calcestruzzo destinato allo Spritzbeton, sono prevalentemente dei Cementi Portland 32,5 R o 42,5 R e, nel caso di lavori in presenza di acque sotterranee solfatliche, vengono talvolta utilizzati Cementi alla Loppa o Cementi Pozzolanic 42,5.
Per ottenere i tempi di presa / rapprendimento rapidi, tipici della tecnologia dello Spritzbeton, vengono, come già detto, introdotti negli impasti degli acceleranti a base alcalina, che devono essere opportunamente scelti o a volte appositamente formulati per poter ottenere le prestazioni desiderate in funzione dello specifico cemento disponibile localmente.

3.2) Nuovi Cementi per Spritzbeton (Fig. 2)
Un gruppo di lavoro europeo, costituito da un produttore tedesco, uno austriaco ed uno italiano, ha contribuito alla semplificazione della tecnologia di produzione dello Spritzbeton, rendendo più affidabile l’ottenimento di risultati qualitativi del calcestruzzo proiettato in opera e risolvendo i pro-
b) Sfido
Lo sfido è stato valutato attorno al 7-10 % in funzione della natura del supporto e della quantità di armatura presente.

c) Spessore consigliato di applicazione
Lo spessore consigliato di applicazione di ogni passata è di circa 10 cm. Spessori maggiori possono essere affidabilmente ottenuti applicando più passate da 10 cm ciascuna l'una sull'altra, lasciando passare qualche minuto tra l'applicazione di una passata e quella successiva.

d) Eluati
E' stata valutata la riduzione della concentrazione degli Alcali negli eluati, in accordo alla Norma Austriaca ON S2072, in confronto con i valori tipici di un calcestruzzo confezionato con Cemento CEM 32,5 con e senza aggiunta di Acceleranti per Spritzbeton:

<table>
<thead>
<tr>
<th>Legante</th>
<th>Additivo</th>
<th>Sodio (mg/kg)</th>
<th>Potassio (mg/kg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CEM 32,5</td>
<td>No</td>
<td>3</td>
<td>12</td>
</tr>
<tr>
<td>CEM 32,5</td>
<td>Si</td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>Ecospritz</td>
<td>No</td>
<td>3</td>
<td>11</td>
</tr>
</tbody>
</table>

1.4) Caratteristiche di un Cis per spritzbeton prodotto con Ecospritz

Vengono di seguito riportate le caratteristiche tecniche ed applicative più importanti di un calcestruzzo per Spritzbeton prodotto con tale Cemento Speciale:

- Cemento: 400 kg/m³
- Aggregati (Dmax 8mm): 1600 kg/m³
- A/C: 0,5
dimostrando che le proprietà di accelerazione della presa sono state raggiunte senza stravolgere quelle di un calcestruzzo tradizionale.

1.5) Tecnologia di applicazione: spritzbeton a «semitumido»

Ecospritz, pur caratterizzato da un'elevata reattività, consente di confezionare calcestruzzi per Spritzbeton con aggregati ad umidità naturale (anche oltre il 6%), e quindi la tecnologia d’impiego può essere ragionevolmente definita «semitumida». Questi cementi, estremamente reattivi in presenza di acqua, non possono essere ovviamente utilizzati per confezionare calcestruzzi negli impianti di betonaggio, né possono essere trasportati con una normale betoniera come previsto nel processo dello Spritzbeton «ad umido», ma necessitano di apparecchiature che rappresentano una moderna e più efficiente versione di quelle sviluppate a suo tempo per lo stoccaggio, la produzione e la proiezione dello Spritzbeton «a secco».

In sostituzione della betoniera tradizionale, per la confezione della miscela semitumida, vengono utilizzate apparecchiature differenti a seconda della tipologia di applicazione. (Fig. 3). In particolare le tecnologie di confezione possono essere sommariamente così classificate:

- Costruzione di strutture nuove e di grandi dimensioni (volumi Spritzbeton applicati >15 m³/h)
- Apparato semovente su slitta o cingoli

FIG. 3 - Fase di carico cemento Ecospritz confezionato in big bags da 1.000 kg, su miscelatore volumetrico Blend, GeoTunnel, Cantiere Galleria Seglia, Ventimiglia
b) Riparazione di strutture e applicazioni di dimensioni minori (volumi Spritzbeton applicati <10 m³/h)

Apparato miscelatore montato su camion.

Per quanto riguarda le proiezioni dello Spritzbeton, vengono utilizzate moderne pompe per tecnologia «a secco» che consentono di applicare con assoluta efficienza fino 18 m³/h di conglomerato. (Fig. 4)
Qualora siano richiesti volumi maggiori, come nel caso a) sopra indicato, la soluzione più conveniente e pratica dal punto di vista di gestione dei cantieri pare essere quella di utilizzare 2 o 3 pompe in parallelo, come già verificato in molteplici applicazioni eseguite.

1.6.1) Applicazioni

Le applicazioni tipiche di Ecospritz sono tutte quelle in cui è possibile prevedere l’utilizzo di un calcestruzzo proiettato strutturale. In particolare si possono indicare per esempio:

a) Costruzioni di strutture:
 • Gallerie
 • Opere in sotterraneo
 • Vasche
 • Rilevati stradali
 • Ferrocemento

b) Riparazione di strutture in calcestruzzo ammalorato:
 • Gallerie
 • Viadotti
 • Strutture idrauliche

FIG. 5 - Particolare progettuale Shell Method
Cantiere Stazione Ferroviaria di Sanremo

FIG. 6 - Particolare progettuale Shell Method -
Cantiere Galleria di fuga e soccorso Terzorio

FIG. 7 - Particolare del guscio strutturale

1.7) Normative tecniche

Attualmente è in avanzata fase di elaborazione la Normativa Unicemento che definisce e regola il «Calcestruzzo Projettato» (Unicemento - GdL Calcestruzzi-Sottogruppo Calcestruzzi Speciali), anche con funzioni strutturali e non solo di sostegno provvisorio. Comunque, tutte le normative tecniche prevengono, sulla base dell’esperienza maturata in molteplici anni di utilizzo, l’uso della tecnologia di Spritzbeton per la messa in opera di calcestruzzi di qualità.

A titolo di esempio citiamo qui di seguito ed in maniera estremamente succinta, l’impostazione data da alcuni Enti ai loro capitolati, relativamente allo Spritzbeton:

a) Ferrovie dello Stato SpA
Nel Cap. 11 «Conglomerati Cementizi Speciali» (All.3) «Prescrizioni per la produzione, trasporto, posa in opera e controllo di conglomerati cementizi», si prevede che lo Spritzbeton possa essere prodotto, oltre che con la tecnica «ad umido», anche con l’uso di leganti a presa rapida senza uso di additivi acceleranti.

b) ANAS
All’art. 3.4, punto F «Lavori in Sotterraneo delle Norme Tecniche per l’esecuzione dei lavori», l’ANAS prevede che la messa in opera del rivestimento in calcestruzzo di 1ª fase della costruzione delle gallerie possa essere eseguito con tecnologia di Spritzbeton sia «a secco» che «ad umido».

c) Autostrade SpA e Autostrada del Brennero SpA
Queste due società prevedono, coerentemente con le indicazioni generali delle Norme tecniche dell’ANAS, la possibilità di utilizzare lo Spritzbeton per la messa in opera di calcestruzzi di 1ª fase nella costruzione di nuove gallerie, per quanto riguarda la tecnologia di Spritzbeton, si esprimono in maniera più restrittiva, indicando la sola tecnologia «ad umido».

Sono comunque in atto applicazioni di notevole entità di Spritzbeton con il sistema a secco e semi-umido per il ripristino di gallerie ammalorate. (Fig. 4)

1.8) Prospettive future

La tecnologia dello Spritzbeton ha fatto negli ultimi anni notevoli progressi dopo un periodo abbastanza lungo di
stasi tecnologica e, specialmente all’estero, ci si è indirizzati con decisione sulla strada del suo utilizzo strutturale, con realizzazioni importanti di tale tecnologia. In essa sono individuati numerosi vantaggi tecnologici ed economici rispetto alle tecnologie tradizionali di costruzione delle strutture in sotterraneo; ciò è testimoniato da tutta una serie di pubblicazioni scientifiche in merito (3)(4)(5)(6)(7)(8).

Ma occorre abbandonare l’impiego dei silicati di Na in quanto frenano lo sviluppo delle resistenze a lungo termine e non consentono il raggiungimento di resistenze «strutturali».

Di particolare importanza e novità è quindi sia la definitiva accettazione dello Spritzbeton strutturale per la messa in opera del calcestruzzo di 2ª fase nella costruzione delle gallerie, ma anche e soprattutto la definizione della tecnologia del Monococque Shotcrete (9)(10), anche definito Single Shell Method (11), per la costruzione in un’unica operazione della struttura delle gallerie, successivamente al primo consolidamento dopo lo scavo, mantenendo nel calcestruzzo messo in opera tutte le caratteristiche di resistenza, durevolezza ed impermeabilità delle attuali strutture, ma rendendo possibili consistenti risparmi sia in termini di sezione di scavo sia per quanto riguarda tempi di esecuzione e costi complessivi dell’opera. (Fig. 5, 6 e 7)

E’ auspicabile che tale impostazione suscitî l’interesse scientifico anche dei progettisti italiani oltre che l’apprezzamento dei nostri Enti committernti in modo che sia possibile vedere di sollevamento (Fig. 8), un impianto misto di vibrazione ed un sistema PLC di governo e controllo.

Questa macchina è corredata di una pompa di proiezione pneumatica; quest’ultima permette la veicolazione della miscela introdotta all’interno di essa dal miscelatore. (Fig. 4)

La seconda è un veicolo speciale autocarro, dotato di motorizzazione autonoma, sul quale si trova assemblato un braccio innovativo robotizzato (Fig. 9) avente la funzione di proiettare la miscela cementizia pre-

2. Il progetto Ecospritzbeton M 8.4
Per l’applicazione di calcestruzzi strutturali progettati in via semiunida il Gruppo Geotunnel & Scamac ha progettato e costruito un impianto composto da due attrezzature specifiche, aventi funzioni totalmente distinte, da utilizzare in lavori civili e minerari.

La prima attrezzatura è una macchina speciale (Fig. 1), assemblata su una slitata telescopica, atta alla miscelazione di inerti e cemento, composta principalmente da un telaio di sostegno, 2 trammogge (inerti e cemento), un nastro trasportatore estrattore, una coclea, due sistemi di pesatura, un sistema di miscelazione, un sistema oleodinamico parata sul primo mezzo nelle zone di intervento.

Il miscelatore dosatore ponderale polivalente Ecospritzbeton Machine presenta una concezione fortemente innovativa; essa consiste nel trasportare tutti gli elementi per il confezionamento dello spritz beton separati in idonee trammogge.

L’impianto estrae durante lo scarico gli elementi in modo ponderale, secondo i parametri scelti dall’Utilizzatore. La miscelazione, pertanto la produzione dello spitz beton, avviene nel momento dello scarico. Molti e particolarmente evidenti sono i vantaggi di questo nuovo impianto rispetto ai sistemi tradizionali di produzione di calcestruzzo.

- Semplicità di carico - Il caricamento può essere eseguito utilizzando un normale impianto di betonaggio o alternativi mezzi di carico quali:
 - pala gommata (Fig. 10)

- terna
- escavatore
- autobetoniera
- normale camion
- dumper
- ...

e per il cemento
- un silos con coclea senza pesa
- un silos mediante trasporto pneumatico (Fig. 11)
- big bag (estrazione gravimetrica o via coclea)
- normali sacchi di cemento.

L’indipendenza di questa macchina dalla centrale di betonaggio consente di effettuare il caricamento direttamente in Cantiere, senza l’ausilio della centrale stessa; questa caratteristica permette di aumentare sensibilmente il raggio d’azione della macchina.

\[\text{FIGURA 9}\]

\[\text{FIGURA 10}\]
FIGURA 11

- **Trasporto separato** - Il miscelatore dosatore ponderale polivalente Ecopsiritzbeton trasporta separatamente gli elementi per il confezionamento del calcestruzzo e consenta all'operatore di variare, nella fase di scarico, la miscela. I comandi vengono eseguiti con l'impianto in funzione ed i dati possono venire registrati e gestiti mediante un semplice software.

- **Versatilità dell'impianto** - Il miscelatore dosatore ponderale polivalente Ecopsiritzbeton, progettato per l'applicazione di calcestruzzi proiettati strutturali, può essere impiegato integrando in una centrale di betonaggio standard; può anche essere impiegato nei getti di complemento, nella microdistruzione, negli scarichi, negli scarichi ove si richiede il frazionamento per diversità del tipo di calcestruzzo. L'impianto permette anche di produrre misti cementati per pavimentazioni e malte; può essere particolarmente idoneo nella distribuzione di inerti in sezione obbligata, nei getti speciali ad alta resistenza, nei getti distanti dal punto di carico, nei getti in zone dove l'inquinamento acustico e dei gas non sono tollerati.

- **Elevata portata dell'impianto** - Il miscelatore dosatore ponderale polivalente Ecopsiritzbeton, nella versione assemblabile su autotelaio, permette una portata elevata. L'impianto montato su un autotelaio a 3 assi (mezzo d'opera) trasporta 10 metri cubi di spritz beton reso.

- **Risparmio del carburante** - Il miscelatore dosatore ponderale polivalente Ecopsiritzbeton riduce drasticamente il consumo del carburante paragonandolo ad una autobetoniera; funziona con ca. 18 kW che può prelevare dalla linea elettrica di Cantieri, nella versione su autotelaio, dalla presa di forza solo al momento dell'estrazione dei componenti.

- **Risparmio del materiale e resistenza del calcestruzzo** - Il miscelatore dosatore ponderale polivalente Ecopsiritzbeton consente una maggiore resistenza del calcestruzzo in generale (grazie alla produzione di calcestruzzo fresco). Il miscelatore dosatore ponderale polivalente Ecopsiritzbeton presenta il grande vantaggio di produrre calcestruzzo nel momento stesso dello scarico evitando il deterioramento a seguito del trasporto tra centrale di betonaggio e Cantieri, nonché l'influenza dei fattori climatici (caldo/freddo). L'innovativa concezione di questo impianto consente importanti risparmi economici nell'uso del cemento ed eventualmente degli additivi.

- **Stabilità dell'impianto** - Il carico stabile ed il baricentro basso consento al miscelatore dosatore ponderale polivalente Ecopsiritzbeton, nella versione su telaio, il superamento di pendenze molto ripide senza perdita di materiale e la massima stabilità nelle curve e nei percorsi fuori strada, riducendo l'usura dei pneumatici.

- **Pulizia senza sprechi** - Non serve un impianto specifico di lavaggio e recuperare delle acque reflue, che è ormai necessario negli impianti di betonaggio per il lavaggio delle autobetoniere (essendo tutti i materiali allo stato secco).

- **Velocità di scarico** - La produttività del miscelatore dosatore ponderale polivalente Ecopsiritzbeton, in fase di scarico, è estremamente elevata, superiore a quella di una autobetoniera convenzionale.

- **Comando a distanza** - Il miscelatore dosatore ponderale polivalente Ecopsiritzbeton può essere dotato di radiocomando per gestire a distanza la macchina.

- **Gestione della fornitura** - Il miscelatore dosatore ponderale polivalente Ecopsiritzbeton non avendo necessità dell'impianto di betonaggio per il carico, consente all'Utilizzatore di avere il servizio di fornitura proprio dello spitzbeton senza grossi investimenti e di autogestirsi il proprio fabbisogno in zone dove vincoli ambientali, mancanza di spazi e costi di investimento e gestione impediscono l'installazione di un impianto di betonaggio.

FIG. 12 - Sistema di dosaggio sabbia/cemento - Schema a blocchi

Estratto da Quarry and Construction • Febbraio 99
Il progetto Ecospritzbeton Machine, inteso nella sua globalità, si differenzia dai sistemi convenzionali di proiezione di calcestruzzo principalmente per i seguenti fattori:
1. Totale innovazione nella progettazione di un sistema di pesatura degli inerti e del cemento finalizzato ad avere un errore di dosaggio del 2% massimo (Fig. 12).
2. Totale innovazione nel design, fornendo una macchina atta a lavorare in un cantiere in sottosuolo.
3. Innovativo sistema di carico da tergo in modo da poter riempire la trammoglia inerti con scarico diretto da dumper.
4. Innovativo sistema di sollevamento per permettere al dosatore ponderale Ecospritzbeton di autolivellarsi e di potersi autocaricare su un pianale. (Fig. 8)
5. Innovativo sistema di miscelazione mediante un miscelatore a gravità che riduce tutti i problemi di usure e presa dei componenti la miscela sugli organi in movimento.
6. Innovativo braccio di proiezione per calcestruzzi preparati a secco o in via semiumida.
7. Innovativo autotelaio da Cantiere, in grado di muoversi con disinvoltura su terreni accidentati e fangosi, con la possibilità di cambiare direzione (3 tipi diversi di sterzatura) in luoghi angusti quali le opere in sottosuolo.
8. Quadruplicamento della produzione standard che attualmente avviene utilizzando attrezzature convenzionali di pompaggio spritzbeton a secco.
10. Riguardo totale per la salvaguardia della salute dei lavoratori, non permettendo più lavori prettamente manuali (fino ad oggi la lancia di proiezione è sempre stata utilizzata manualmente) e mantenendo l’operatore dalla zona di lavoro tramite un comando ombelica (rischi per polveri, rumori, crolli, ...).

3.1 Principali caratteristiche tecniche del miscelatore M 8.4

<table>
<thead>
<tr>
<th>Produzione oraria max</th>
<th>28 mc/h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacità tramoggia inerti</td>
<td>10 mc</td>
</tr>
<tr>
<td>Capacità tramoggia cemento</td>
<td>4 mc</td>
</tr>
<tr>
<td>Altezza max</td>
<td>2,6 m</td>
</tr>
<tr>
<td>Larghezza max</td>
<td>2,5 m</td>
</tr>
<tr>
<td>Peso</td>
<td>8 ton</td>
</tr>
<tr>
<td>Potenza impegnata</td>
<td>20 kW</td>
</tr>
</tbody>
</table>

Gli organi principali che costituiscono la macchina (Fig. 13) sono rappresentati nel lay out riportato in basso.

4.1 Manipolatore robotizzato di lancio Ecospritzbeton SM 305.8

La proiezione del calcestruzzo strutturale avviene mediante un braccio di proiezione (Fig. 14) composto da:
- due ralle orizzontali;
- una ralla verticale;
- 5 elementi di sbraccio e snodo;
- sistema di pennellamento automatico autotarabile;
- comandi degli elementi mediante ci-
lindri idraulici;
- pompa tripla di azionamento;
- sistema automatico di distribuzione Ecopspritzbeton;
- telecomando ombelicale.
Il braccio è stato progettato con un parallelismo meccanico, in quattro elementi comandati da cilindri idraulici con valvola di regolazione della velocità e valvola di blocco per consentire la massima articolazione (Fig. 17).
Il cinematismo del braccio manipolatore sul piano orizzontale e verticale viene azionato da motori oleodinamici con riduttore e freno incorporato. La valvola di scarico regolatrice di pressione è tarata per il controllo del blocaggio delle rotazioni in funzione della velocità di taratura del braccio e della sezione di lavoro.
Il sistema automatico di distribuzione dello spritz è montato sulla testa del braccio (pennellamento).

FIG. 15 - Stazione Ferroviaria di Sanremo, camera schiuseggi: realizzazione di rivestimento strutturale mediante Ecopspritz

5.1 Bibliografia
6. «New ecologically desirable sprayed concrete», Dr. Kusterle (Univ. Innsbruck).
10. «Constructional and economic Solutions for Monocouple Tunnel Lining» - Dr. Ing. Schreyer (STUVA - D) - Tunnelling 2/96.
11. «Single Shell Shotcrete method» - Prof. Lukas - Dr. Kusterle (Univ. Innsbruck).